How do you evaluate #csc((17pi)/3)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N Dec 23, 2016 #- (2sqrt3)/3# Explanation: #csc ((17pi)/3) = 1/sin ((17pi)/3)#. Find #sin ((17pi)/3)# by using trig table and unit circle: #sin ((17pi)/3) = sin (-pi/3 + (18pi)/3) = sin (-pi/3 + 6pi) = = sin (-pi/3) = - sin (pi/3) = - sqrt3/2# There for: #csc ((17pi)/3) = - 2/sqrt3 = - (2sqrt3)/3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 6367 views around the world You can reuse this answer Creative Commons License