How do you find the integral of # Cos(2x)Sin(x)dx#?
1 Answer
Explanation:
Use the identity
#=int(1 - 2sin^2x)sinxdx#
Multiply out.
#=int(sinx - 2sin^3x)dx#
Separate using
#=int(sinx)dx - int(2sin^3x)dx#
The antiderivative of
#=-cosx - 2int(1 - cos^2x)sinxdx#
Let
#=-cosx - 2int(1 - u^2)sinx * -(du)/sinx#
The sines under the integral cancel each other out.
#=-cosx - 2int(1 - u^2) * -(du)#
Extract the negative
#=-cosx + 2int(1 - u^2)du#
Separate the integrals.
#=-cosx + 2int1du - 2intu^2du#
Integrate using the rule
#=-cosx + 2u - 2(1/3u^(3)) + C#
Resubstitute
#=-cosx + 2cosx - 2/3cos^3x + C#
Finally, combine like terms.
#=cosx - 2/3cos^3x + C#
Hopefully this helps!