Let #RR# denoted the set of real numbers. Find all functions #f:RR->RR#,satisfying #abs(f(x) - f(y)) = 2 abs(x-y)# for all #x,y# belongs to #RR#.?

1 Answer
Dec 28, 2016

#f(x) = pm 2 x+ C_0#

Explanation:

If #abs(f(x)-f(y))=2abs(x-y)# then #f(x)# is Lipschitz continuous. So the function #f(x)# is differentiable. Then following,

#abs(f(x)-f(y))/(abs(x-y))=2# or
#abs((f(x)-f(y))/(x-y))=2# now

#lim_(x->y)abs((f(x)-f(y))/(x-y))=abs(lim_(x->y)(f(x)-f(y))/(x-y)) = abs(f'(y))=2#

so

#f(x) = pm 2 x+ C_0#