If #n^(5/2) = 32#, what is the value of #n#?
3 Answers
Explanation:
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(n^(5/2)=(sqrtn)^5)color(white)(2/2)|)))# Take the
#color(blue)"fifth root of both sides"#
#rArr((sqrtn)^5)^(1/5)=root(5)(32)#
#rArrsqrtn=2# To solve for n,
#color(blue)"square both sides"#
#(sqrtn)^2=2^2rArrn=4#
Explanation:
We should write
Note that
So, we have:
#n^(5/2)=2^5#
Now, we want to solve for
So, we have:
#(n^(5/2))^(2/5)=(2^5)^(2/5)#
#n=2^(5xx2/5)=2^2=4#
The Real solution is
There are additional Complex solutions:
#n = 4cos((4pi)/5)+4isin((4pi)/5)#
#n = 4cos(-(4pi)/5)+4isin(-(4pi)/5)#
Explanation:
The other solutions have in one way or another assumed:
#n^(ab) = (n^a)^b#
This does hold when
Since the questions asks about a fractional power
If
#n = n^1 = n^(5/2*2/5) = (n^(5/2))^(2/5) = 32^(2/5) = (2^5)^(2/5) = 2^(5*2/5) = 2^2 = 4#
Are there other solutions?
If
#n = 4cos((4pi)/5)+4isin((4pi)/5)#
and:
#n = 4cos(-(4pi)/5)+4isin(-(4pi)/5)#
To see why, consider de Moivre's formula:
#(cos theta + i sin theta)^N = cos N theta + i sin N theta#
So we find:
#(4cos((4pi)/5)+4isin((4pi)/5))^(5/2) = (4(cos((4pi)/5)+isin((4pi)/5)))^(5/2)#
#color(white)((4cos((4pi)/5)+4isin((4pi)/5))^(5/2)) = 4^(5/2)(cos((4pi)/5)+isin((4pi)/5))^(5/2)#
#color(white)((4cos((4pi)/5)+4isin((4pi)/5))^(5/2)) = 4^(5/2)(cos((4pi)/5*5/2)+isin((4pi)/5*5/2))#
#color(white)((4cos((4pi)/5)+4isin((4pi)/5))^(5/2)) = 4^(5/2)(cos(2pi)+isin(2pi))#
#color(white)((4cos((4pi)/5)+4isin((4pi)/5))^(5/2)) = 4^(5/2)#
#color(white)((4cos((4pi)/5)+4isin((4pi)/5))^(5/2)) = 32#
Similarly:
#(4cos(-(4pi)/5)+4isin(-(4pi)/5))^(5/2) = 32#