What is the derivative of #(sinx)^2*(cosx)^2#?

2 Answers
Dec 29, 2016

#y'=2sinxcosx(cos^2x-sin^2x)#

Explanation:

You have to use the product rule to differentiate this expression.

#y=(sin x)^2xx(cos x)^2#

#u=(sin x)^2, v= (cos x)^2#

#u' = 2(sinx)^1cosx=2sinxcosx#

#v'=2(cosx)-sinx=-2cosxsinx#

#y'=vu'+uv'#

#y'=2sinxcos^3x-2cosxsin^3x=2sinxcosx(cos^2x-sin^2x)#

Dec 30, 2016

# d/dx sin^2xcos^2x = 1/2sin4x#

Explanation:

Another approach is to simply the expression using the identity:

# sin 2theta = 2sinthetacostheta#

before starting, which yields a simpler, (but identical) form of the solution:

# d/dx sin^2xcos^2x = d/dx (sinxcosx)^2#
# " "= d/dx (1/2sin2x)^2#
# " "= 1/4d/dx sin^2 2x#
# " "= 1/4*2sin2x*cos2x*2 \ \ \ # (by the chain rule)
# " "= 1/2sin4x#