If f(-2)=1 and f'(-2)=5, what is the approximate value of f(-2.01)?

2 Answers
Dec 29, 2016

#f(-2.01) ~~ 1.05#

Explanation:

Assuming that #f(x)# is differentiable in the neighborhood of #x=2#, from the Second Fundamental Theorem of Calculus,

#f(-2.01) = f(-2) + int_{-2}^{-2.01} f'(x) "d"x#

Using a right rectangle approximation, assume that #f'(x) ~~ f'(-2)# for all #-2.01 <= x <= -2#

The above equation then becomes

#f(-2.01) ~~ f(-2) + int_{-2}^{-2.01} f'(-2) "d"x#

#= f(-2) + [-2-(-2.01)] f'(-2) #

#= f(-2) + [-2-(-2.01)] (5)#

#= f(-2) + (0.01) (5)#

#= f(-2) + 0.05#

#= 1 + 0.05#

#= 1.05#

Dec 30, 2016

#0.95#

Explanation:

#f(x+h)approx f(x)+hf'(x)#
Let #h=-0.01#, #x=-2#, #f(x)=1#, #f'(x)=5#

#f(-2-0.01)approx (1)+(-0.01)xx(5)#
#f(-2.01)approx 0.95#