How do you solve #abs(sinx)=sqrt3/2# in the interval [0,360]?

2 Answers
Dec 30, 2016

Solutions: In # [0,360] x= {60^0 ,120^0 ,240^0 ,300^0}#

Explanation:

#|sinx| = sqrt3/2 or sinx = sqrt3/2 ; sin 60^0=sqrt3/2 , sin 120=sqrt 3/2 :. x=60^0 , x=120^0# OR

#|sinx| = sqrt3/2 or sinx = - sqrt3/2 ; sin 240^0= -sqrt3/2 , sin 300= -sqrt 3/2 :. x=240^0 , x=300^0#

Solutions: In # [0,360]x=60^0 , x=120^0 ,x=240^0 , x=300^0# [Ans]

Dec 30, 2016

#pi/3, (2pi)/3, (4pi)/3, (5pi)/3#

Explanation:

Separate solving in 2 cases:
a. #sin x = sqrt3/2#
Trig table and unit circle give 2 solution arcs:
#x = pi/3 and x = 2pi/3 #
b. #sin x = - sqrt3/2#
Trig table and unit circle give:
#x = - pi/3, and x = - (2pi)/3#
The co-terminal arc of #(-pi/3) is (5pi)/3#
The co-terminal arc of #((-2pi)/3) is (4pi)/3#
Answers for #(0, 2pi)#;
#pi/3, (2pi)/3, (4pi)/3, (5pi)/3#