How do you evaluate #c-2ab# if #a=2.4, b=0.237#, and #c=9.49#?

1 Answer
Jan 1, 2017

#8.3524#

Explanation:

Substituting the values we have:

#c-2ab" "->" "9.49-2(2.4)(0.237)#
..........................................................................................
Multiplying out the brackets we have:

If the decimals give you a problem and you wish to calculate manually you may do this:

#2.4# is the same as #24xx1/10#
#0.237# is the same as #237xx1/1000#

Putting it all together we have:

#24xx237xx1/10xx1/1000 color(white)("d")->color(white)("d")24xx237xx1/10000 #

Multiplying out just the whole numbers:
#20xx237->4740 #
#color(white)("d")4xx237->ul(color(white)("4")948 larr" Add") #
#color(white)("dddddddddd")5688#
Now we multiply by #1/10000# giving: #0.5688# giving:

#9.4200-2(0.5688)#

#9.4200-1.1376#
......................................................................................

Changing the way that 9.4900 looks without changing its value

#9.4900" is the same as "9.4cancel(9)^8 cancel(0)^(10)0#

and #9.4cancel(9)^8 cancel(0)^(10) 0" is the same as "9.4(cancel(9))^8 cancel(0)^(9) cancel(0)^10#
...............................................................................

Now we can do the subtraction more easily:

#9.4cancel(9)^8 cancel(0)^(9) cancel(0)^10#
#ul(1.1color(white)(.)3color(white)(.)7color(white)(.)6)" "larr" Subtract"#
#8.3color(white)(.)5color(white)(.)2color(white)(.)4#

color(white)("d")