How do you prove #\frac{ 1+ \tan ^ { 2} x }{ \sin ^ { 2} x + \cos ^ { 2} x } = \sec ^ { 2} x#?

1 Answer
Jan 2, 2017

First of all, apply the identity #sin^2x + cos^2x = 1# to get rid of the denominator.

#(1 + tan^2x)/(sin^2x + cos^2x) = sec^2x#

#(1 + tan^2x)/1 = sec^2x#

#1 + tan^2x = sec^2x#

Use the identities #tanx = sinx/cosx# and #secx = 1/cosx#.

#1 + sin^2x/cos^2x= 1/cos^2x#

#(cos^2x + sin^2x)/cos^2x = 1/cos^2x#

Apply the pythagorean identity mentioned in the first line.

#1/cos^2x = 1/cos^2x#

#LHS = RHS#

Hopefully this helps!