Question #6c613

1 Answer
Jan 2, 2017

#arctan^2(2x)/4+C#

Explanation:

Note I'll be using the format #arctan(x)# instead of #"arctg"(x)#.

#intarctan(2x)/(1+4x^2)dx#

Note that since #d/dxarctan(x)=1/(1+x^2)#, we see that #d/dxarctan(2x)=1/(1+(2x)^2)d/dx(2x)=2/(1+4x^2)#.

So, if we try the substitution #u=arctan(2x)#, then #du=2/(1+4x^2)dx#. We currently have #1/(1+4x^2)dx# in the integrand, so we are just off by a factor of #2#.

#intarctan(2x)/(1+4x^2)dx=1/2intarctan(2x)2/(1+4x^2)dx=1/2intucolor(white).du#

Now use the rule #intu^ndu=u^(n+1)/(n+1)#:

#intarctan(2x)/(1+4x^2)dx=1/2u^2/2=u^2/4=arctan^2(2x)/4+C#