How do you solve #2(x-4) + y=6# and #3x-2(y-3)=13# using substitution?
1 Answer
Explanation:
Substitution means rearranging one of the 2 equations in terms of x or y and substituting into the other equation.
Choosing
#2(x-4)+y=6 # and rearranging to make y the subject.distribute the bracket.
#2x-8+y=6# subtract 2x from both sides.
#cancel(2x)cancel(-2x)-8+y=6-2x# add 8 to both sides.
#cancel(-8)cancel(+8)+y=6+8-2x#
#rArry=14-2xlarrcolor(red)"y is now the subject"# We can now substitute this into the other equation and solve for x.
#rArr3x-2(color(red)(14-2x)-3)=13#
#rArr3x-2(11-2x)=13#
#rArr3x-22+4x=13#
#rArr7x=35rArrx=35/7=5# We have
#y=14-2x" from above"# and substituting x = 5 will give corresponding value of y.
#x=5rArry=14-(2xx5)=14-10=4#
#"Thus solution is " x=5,y=4#
#color(blue)"As a check"#
#2(5-4)+4=2+4=6color(white)(xx)✔︎#
#"and " (3xx5)-2(4-3)=15-2=13color(white)(xx)✔︎#