Question #c86dc
2 Answers
Explanation:
Using L'Hopital's rule:
#=lim_(x->oo)e^(xln((ax+1)/(ax))#
#=e^(lim_(x->oo)xln((ax+1)/(ax)))#
The last equality follows from the continuity of the function
Focusing on the new limit:
Direct substitution leads to a
#=lim_(x->oo)(d/dxln(1+1/(ax)))/(d/dx1/x)#
#=lim_(x->oo)(1/(1+1/(ax))(-1/(ax^2)))/(-1/x^2)#
#=lim_(x->oo)1/(a+1/x)#
#=1/a#
Substituting this back into our original limit, we have
#=e^(1/a)#
Setting this equal to
Explanation:
An alternative answer, using algebra and the possible definition of
#=lim_(x->oo)((1+1/(ax))^(ax))^(1/a)#
Let
#=lim_(u->oo)((1+1/u)^u)^(1/a)#
#=(lim_(u->oo)(1+1/u)^u)^(1/a)#
The above equality follows from the continuity of the function
#=e^(1/a)#
Setting this result equal to