Question #f29c8

2 Answers
Jan 8, 2017

#y = pi+4kpi, k = 0,1,2,cdots#

Explanation:

#tan(a+b)=(tan a+tanb)/(1-tan a tanb)#

so calling

#y/4 = 2arctan(1/3)+arctan(1/7)# then

#tan(y/4)=tan(2arctan(1/3)+arctan(1/7))=(3/4+1/7)/(1-3/4 1/7)=1#

so

#tan(y/4)=tan(pi/4+kpi)# then

#y = pi+4kpi, k = 0,1,2,cdots#

Jan 8, 2017

#180^@#

Explanation:

Use calculator.
#arctan (1/3) = 18^@43#
#2arctan (1/3) = 36^@87#
#arctan (1/7) = 8^@13#
#2arctan (1/3) + arctan (1/7) = 36.87 + 8.13 = 45^@#
Finally,
#4(2arctan (1/3) + arctan (1/7)) = 4 (45^@) = 180^@#