How do you solve #\frac { x - 5} { x + 3} < 0#?

2 Answers
Jan 9, 2017

Only solution is #-3< x < 5# i.e. #x# lies between #-3# and #5#

Explanation:

#(x-5)/(x+3)<0# means #(x-5)/(x+3)# is negative

i.e. either #x-5<0# and #x+3>0# i.e. #x<5# and #x> -3#

i.e. #-3< x < 5#

or #x-5>0# and #x+3<0# i.e. #x>5# and #x< -3#, but this is not possible.

Hence only solution is #-3< x < 5# i.e. #x# lies between #-3# and #5#

Jan 9, 2017

Open interval (-3, 5)

Explanation:

Let me introduce the method of superimposing by using the double number line.
#f(x) = g(x)/(h(x)) = (x - 5)/(x + 3)# < 0
The first number line figures the variation of g(x) = x - 5
The second number line figures the variation of h(x) = x + 3
f(x) has the resulting sign of the product g(x).h(x)

-------------------------------- 0 ----------------------- 5 ++++++++++++++ h(x)
----------------- - 3 ++++++ 0+++++++++++++++5++++++++++++++ g(x)
+++++++++++ -3 ------------------------------------- 5 +++++++++++++ f(x)

By superimposing, we see that f(x) is negative (f(x) < 0) inside the open interval (-3, 5)