How do you find the derivative of #f(x)=1/(x-1)# using the limit process?
1 Answer
Jan 9, 2017
#f'(x) = - (1 ) /((x-1)^2 #
Explanation:
The definition of the derivative of
# f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h #
So if
And so the derivative of
#f'(x) = lim_(h rarr 0) ( 1/((x+h)-1) - 1/(x-1) ) /h #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( (x-1)-(x+h-1) ) /( h(x-1)(x+h-1) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) ( -h ) /( h(x-1)(x+h-1) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) - (1 ) /((x-1)(x+h-1) #
# \ \ \ \ \ \ \ \ = - (1 ) /((x-1)(x+0-1) #
# \ \ \ \ \ \ \ \ = - (1 ) /((x-1)^2 #