How do you find the second derivative of #ln(2x) #?
1 Answer
Jan 10, 2017
Explanation:
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx[ln(f(x))]=(f'(x))/(f(x)))color(white)(2/2)|)))#
#"let " f(x)=ln(2x)#
#rArrf'(x)=1/(2x).d/dx(2x)=2/(2x)=1/x=x^-1#
#" To find the second derivative " f''(x), "differentiate" f'(x)#
#rArrf''(x)=-1x^-2=-1/x^2#