How do you find the second derivative of #ln(2x) #?

1 Answer
Jan 10, 2017

#-1/x^2#

Explanation:

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx[ln(f(x))]=(f'(x))/(f(x)))color(white)(2/2)|)))#

#"let " f(x)=ln(2x)#

#rArrf'(x)=1/(2x).d/dx(2x)=2/(2x)=1/x=x^-1#

#" To find the second derivative " f''(x), "differentiate" f'(x)#

#rArrf''(x)=-1x^-2=-1/x^2#