How do you integrate #int sec^2(2x-1)#?

1 Answer
Jan 10, 2017

#intsec^2(2x-1)dx=1/2tan(2x-1)+C#

Explanation:

Note that #d/dxtan(x)=sec^2(x)#. This implies that #intsec^2(x)dx=tan(x)+C#.

Apply the substitution #u=2x-1#, which implies that #du=2dx#:

#intsec^2(2x-1)dx=1/2intsec^2(2x-1)(2dx)=1/2intsec^2(u)du#

As we saw before, #intsec^2(u)du=tan(u)+C#:

#intsec^2(2x-1)dx=1/2tan(u)+C#

Returning to the original variable #x#, use #u=2x-1#:

#intsec^2(2x-1)dx=1/2tan(2x-1)+C#