How do you integrate #int sec^2(2x-1)#?
1 Answer
Jan 10, 2017
Explanation:
Note that
Apply the substitution
#intsec^2(2x-1)dx=1/2intsec^2(2x-1)(2dx)=1/2intsec^2(u)du#
As we saw before,
#intsec^2(2x-1)dx=1/2tan(u)+C#
Returning to the original variable
#intsec^2(2x-1)dx=1/2tan(2x-1)+C#