How do you find the definite integral of #5xcos(x^2)dx# from #[0, sqrtpi]#?

1 Answer
Jan 14, 2017

#int_0^sqrtpi5xcos(x^2)dx=0#

Explanation:

We have the integral:

#I=int_0^sqrtpi5xcos(x^2)dx#

To deal with the inside of the cosine function, let #u=x^2#. Differentiating this shows that #du=2xcolor(white).dx#. This is perfect because we have an extra #x# floating around the integrand.

#I=5/2int_0^sqrtpi2xcos(x^2)dx=5/2int_0^sqrtpiunderbrace(cos(x^2))_(cos(u))overbrace((2xcolor(white).dx))^(du)#

When converting from #x# to #u#, plug the current #x# bounds into #u=x^2#.

When #x=0#, then #u=0^2=0#. When #x=sqrtpi#, then #u=(sqrtpi)^2=pi#. Thus:

#I=5/2int_0^picos(u)du#

Since #intcos(x)dx=sin(x)#:

#I=5/2[sin(u)]_0^pi#

#I=5/2sin(pi)-5/2sin(0)#

#I=0-0#

#I=0#