How do you find the antiderivative of #int cos(pit)cos(sin(pit))dt#?

1 Answer
Jan 14, 2017

#1/pisin(sin(pit))+C#

Explanation:

Let's try to simplify the trig function within the trig function by letting #u# be the inside function, that is, #u=sin(pit)#. Differentiating this shows that #du=picos(pit)dt#. (Recall to use the chain rule.)

We currently have #cos(pit)dt# in the integral, so we need the factor of #pi#.

#intcos(pit)cos(sin(pit))dt=1/piintcos(sin(pit))*picos(pit)dt#

Substituting in:

#=1/piintcos(u)du#

This is a common integral:

#=1/pisin(u)+C#

Substituting back in #u=sin(pit)#:

#=1/pisin(sin(pit))+C#