How do you evaluate the integral #int dx/(x+1)^3#?

1 Answer
Jan 15, 2017

#intdx/(x+1)^3=(-1)/(2(x+1)^2)+C#

Explanation:

Let #u=x+1#. Differentiating this shows that #du=dx#. We can then write:

#intdx/(x+1)^3=int(du)/u^3=intu^-3du#

This can be integrated through the rule #intu^ndu=u^(n+1)/(n+1)+C# where #n!=-1#.

#intdx/(x+1)^3=u^(-2)/(-2)+C=(-1)/(2u^2)+C#

Returning to the original variable #x# with #u=x+1#:

#intdx/(x+1)^3=(-1)/(2(x+1)^2)+C#