How do you evaluate the integral #int dx/(x+1)^3#?
1 Answer
Jan 15, 2017
Explanation:
Let
#intdx/(x+1)^3=int(du)/u^3=intu^-3du#
This can be integrated through the rule
#intdx/(x+1)^3=u^(-2)/(-2)+C=(-1)/(2u^2)+C#
Returning to the original variable
#intdx/(x+1)^3=(-1)/(2(x+1)^2)+C#