How do you find the antiderivative of #int (xsin^2x) dx#?
1 Answer
Jan 16, 2017
Explanation:
It's often very advantageous to rewrite
#intxsin^2xdx=int1/2x(1-cos(2x))dx#
Expanding:
#=1/2intxdx-1/2intxcos(2x)dx#
The first integral is basic:
#=1/2x^2/2-1/2intxcos(2x)dx#
#=1/4x^2-1/2intxcos(2x)dx#
Now performing integration by parts:
#{(u=x" "=>" "du=dx),(dv=cos(2x)" "=>" "v=1/2sin(2x)):}#
Note that going from
Then the integral equals:
#=1/4x^2-1/2(uv-intvdu)#
#=1/4x^2-1/2(1/2xsin(2x)-int1/2sin(2x)dx)#
#=1/4x^2-1/4xsin(2x)+1/4intsin(2x)dx#
Note that
#=1/4x^2-1/4xsin(2x)-1/8cos(2x)+C#