What is the antiderivative of #x sqrtx#?
1 Answer
Jan 17, 2017
Explanation:
Note that
#intxsqrtxcolor(white).dx=intx^(3/2)dx#
Now use the rule
#=x^(3/2+1)/(3/2+1)+C=x^(5/2)/(5/2)+C=2/5x^(5/2)+C#
If you so desire, you can write that
#x^(5/2)=x^(4/2)x^(1/2)=x^2sqrtx#
So:
#intxsqrtxcolor(white).dx=2/5x^2sqrtx+C#