How do you evaluate the definite integral #intx/(x^2+1)# from #[0,sqrt(e-1)]#?
1 Answer
Jan 17, 2017
Explanation:
#I=int_0^sqrt(e-1)x/(x^2+1)dx#
Let:
#u=x^2+1#
#du=2xcolor(white).dx#
When we perform this substitution, we will also change the current bounds:
#x=sqrt(e-1)" "=>" "u=x^2+1=(sqrt(e-1))^2+1=e#
#x=0" "=>" "u=x^2+1=0^2+1=1#
Then:
#I=1/2int_0^sqrt(e-1)(2x)/(x^2+1)dx=1/2int_1^e1/udu#
This is the integral of the natural logarithm:
#I=1/2(lnabsu)|_1^e=1/2(lne-ln1)=1/2(1-0)=1/2#