How do you find the volume of the solid obtained by rotating the region bounded by y=5x^2 ,x=1 , and y=0, about the x-axis?
1 Answer
Jan 18, 2017
Volume
Explanation:
graph{(y-5x^2)(x-1)(y)=0 [-3, 3, -2, 6]}
The Volume of Revolution about
# V= int_(x=a)^(x=b) \ pi y^2 \ dx #
So for for this problem:
# V= int_0^1 \ pi (5x^2)^2 \ dx #
# \ \ \= pi \ int_0^1 \ 25x^4 \ dx #
# \ \ \= pi \ [(25x^5)/5]_0^1#
# \ \ \= 5pi \ [x^5]_0^1#
# \ \ \= 5pi (1-0)#
# \ \ \= 5pi#