How do you find the antiderivative of #int cos^3xsin^2xdx#?
1 Answer
Jan 18, 2017
Explanation:
Factor:
#intcosx(cos^2x)sin^2xdx#
Rewrite using the pythagorean identity
#intcosx(1 - sin^2x)sin^2xdx#
Expand:
#intcosx(sin^2x - sin^4x)dx#
Let
#intcosx(u^2 - u^4) * (du)/cosx#
#intu^2 - u^4du#
This can be integrated as
#1/3u^3 - 1/5u^5 + C#
Reverse the substitution:
#1/3sin^3x - 1/5sin^5x + C#
Hopefully this helps!