How do you evaluate the integral #int lnx/(1+x)^2#?
1 Answer
Jan 19, 2017
Explanation:
#I=intlnx/(1+x)^2dx#
Integration by parts takes the form
#u=lnx#
#dv=1/(1+x)^2dx#
Differentiate
#du=1/xdx#
#v=-1/(1+x)#
Then:
#I=uv-intvdu#
#I=-lnx/(1+x)-int1/x(-1/(1+x))dx#
#I=-lnx/(1+x)+int1/(x(1+x))dx#
Perform partial fraction decomposition on
#1/(x(1+x))=A/x+B/(1+x)#
Then:
#1=A(1+x)+Bx#
Letting
#1=A(1-1)+B(-1)#
#B=-1#
Letting
#1=A(1+0)+B(0)#
#1=A#
Then:
#1/(x(1+x))=1/x-1/(1+x)#
So:
#I=-lnx/(1+x)+int1/xdx-int1/(1+x)dx#
These are simple integrals. The second can be performed with the substitution
#I=-lnx/(1+x)+lnx-ln(1+x)+C#