How do you find the derivative of #f(x)=x^3-12x# using the limit process?

1 Answer
Jan 19, 2017

#(df)/dx = 3x^2 - 12#. Explanation below.

Explanation:

#f# is a polynomial function, so it is (infinitely) differentiable everywhere. Using the alternate definition of the derivative, since we need the general derivative function:

#lim_(h->0) (f(x + h) - f(x))/h =#

#lim_(h->0) ((x+h)^3 - 12(x + h) - x^3 + 12x)/h =#

#lim_(h->0) (x^3 + 3x^2h + 3xh^2 + h^3 - 12x - 12h - x^3 + 12x)/h =#

#lim_(h->0) (3x^2h + 3xh^2 + h^3 - 12h)/h =#

#lim_(h->0) (h(3x^2 + 3xh + h^2 - 12))/h =#

#lim_(h->0) (3x^2 + 3xh + h^2 - 12) = 3x^2 + 0 + 0 - 12#

#=3x^2 - 12#.