How do you factor #-2x^3+6x^2-3#?
1 Answer
where:
#x_n = 1+2cos(1/3 cos^(-1)(1/4)+(2npi)/3)#
Explanation:
Given:
#f(x) = -2x^3+6x^2-3#
Rational roots theorem
By the rational roots theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/2, +-1, +-3/2, +-3#
Trying each in ascending order, we find:
#f(-3) = 105#
#f(-3/2) = 69/4#
#f(-1) = 5#
#f(-1/2) = -5/4#
#f(1/2) = -7/4#
#f(1) = 1#
#f(3/2) = 15/4#
#f(3) = -3#
So
Tschirnhaus transformation
To make the cubic easier to solve, use a linear substitution called a Tschirnhaus transformation as follows:
#(-4)f(x) = 8x^3-24x^2+12#
#color(white)((-4)f(x)) = (2x-2)^3-12(2x-2)-4#
#color(white)((-4)f(x)) = t^3-12t-4#
where
Trigonometric substitution
Next we make a substitution:
#t = k cos theta#
where
#4 cos^3 theta - 3 cos theta = cos 3 theta#
Let
Then:
#0 = t^3-12t-4#
#color(white)(0) = (k cos theta)^3-12(k cos theta)-4#
#color(white)(0) = k(k^2 cos^3 theta-12 cos theta)-4#
#color(white)(0) = 4(16 cos^3 theta-12 cos theta)-4#
#color(white)(0) = 16(4 cos^3 theta-3 cos theta)-4#
#color(white)(0) = 16cos 3 theta-4#
Hence:
#cos 3 theta = 1/4#
So:
#3 theta = +-cos^(-1)(1/4)+2npi" "# for some integer#n#
So:
#theta = +-1/3cos^(-1)(1/4)+(2npi)/3#
So:
#cos theta = cos(+-1/3 cos^(-1)(1/4) + (2npi)/3)#
So:
#t_n = k cos theta = 4cos(1/3 cos^(-1)(1/4)+(2npi)/3)#
(( we can discard the
This last formula provides
Then
Hence zeros of our original cubic:
#x_n = 1+2cos(1/3 cos^(-1)(1/4)+(2npi)/3)" "# for#n = 0, 1, 2#
#x_0 ~~ 2.8100379#
#x_1 ~~ -0.6417835#
#x_2 ~~ 0.8317456#
Then
#-2x^3+6x^2-3 = -2(x-x_0)(x-x_1)(x-x_2)#