How do you find the integral of #sin^2(2x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Jan 21, 2017 The answer is #=x/2-(sin4x)/8+C# Explanation: We use #cos4x=1-2sin^2(x)# #sin^2 2x=1/2(1-cos4x)# Therefore, #int(sin^2 2x)dx=1/2int(1-cos4x)dx# #=1/2(x-(sin4x)/4)+C# #=x/2-(sin4x)/8+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 25938 views around the world You can reuse this answer Creative Commons License