How do you express #cot^3theta-cos^2theta-tan^3theta # in terms of non-exponential trigonometric functions?

2 Answers
Jan 21, 2017

#cos^3theta/sin^3theta - cos^2theta - sin^3theta/cos^3theta#

#(cos^6theta - sin^6theta)/(cos^3thetasin^3theta) - cos^2theta#

#(cos^6theta - sin^6theta - cos^5thetasin^3theta)/cos^3theta#

#((cos^2theta)^3 - (sin^2theta)^3 - costhetasintheta(cos^2theta)^2(sin^2theta))/(cos^2theta(costheta))#

Now use the power reduction formulae #cos^2x = (1 + cos2x)/2# and #sin^2x = (1 - cos2x)/2#

#(((1 + cos2theta)/2)^3- ((1 - cos2theta)/2)^3 - costhetasintheta((1 + cos2theta)/2)^2((1 - cos2theta)/2)^2)/((1 + cos2theta)/2costheta)#

This can be simplified further, but I'll leave the algebra up to you.

Hopefully this helps!

Jan 21, 2017

#cot^3theta-cos^2theta-tan^3theta=(16cot2theta)/(1-cos4theta)-2cot2theta-(1+cos2theta)/2#

Explanation:

#cot^3theta-cos^2theta-tan^3theta#

= #cot^3theta-tan^3theta-cos^2theta#

= #(cottheta-tantheta)(cot^2theta+tan^2theta+cotthetatantheta)-(1+cos2theta)/2#

= #(cottheta-tantheta)((cottheta+tantheta)^2-cotthetatantheta)-(1+cos2theta)/2#

= #((cos^2theta-sin^2theta)/(sinthetacostheta))((1/(sinthetacostheta))^2-1)-(1+cos2theta)/2#

= #(2cos2theta)/(sin2theta)((2/(sin2theta))^2-1)-(1+cos2theta)/2#

= #2cot2theta(4/(sin^2 2theta)-1)-(1+cos2theta)/2#

= #2cot2theta(8/(1-cos4theta)-1)-(1+cos2theta)/2#

= #(16cot2theta)/(1-cos4theta)-2cot2theta-(1+cos2theta)/2#