How do you evaluate the integral #int sqrt(x^2-1)dx#?
2 Answers
Explanation:
#I=intsqrt(x^2-1)color(white).dx#
Use the trigonometric substitution
#I=intsqrt(sec^2theta-1)(secthetatanthetacolor(white).d theta)#
Note that from the identity
#I=inttan(secthetatantheta)d theta#
#I=intsecthetatan^2thetacolor(white).d theta#
Let
#I=intsectheta(sec^2theta-1)color(white).d theta#
#I=intsec^3thetacolor(white).d theta-intsecthetacolor(white).d theta#
The integral of
#I=intsec^3thetacolor(white).d theta-lnabs(sectheta+tantheta)#
Let
#J=intsectheta(sec^2theta)d theta#
This can be tackled using integration by parts. Let:
#{(u=sectheta" "=>" "du=secthetatanthetacolor(white).d theta),(dv=sec^2thetacolor(white).d theta" "=>" "v=tantheta):}#
Then:
#J=secthetatantheta-intsecthetatan^2thetacolor(white).d theta#
Again let
#J=secthetatantheta-intsectheta(sec^2theta-1)d theta#
#J=secthetatantheta-intsec^3thetacolor(white).d theta+intsecthetacolor(white).d theta#
Note that the original integral
#J=secthetatantheta-J+lnabs(sectheta+tantheta)#
#2J=secthetatantheta+lnabs(sectheta+tantheta)#
#J=1/2secthetatantheta+1/2lnabs(sectheta+tantheta)#
Returning to the original integral:
#I=J-lnabs(sectheta+tantheta)#
#I=(1/2secthetatantheta+1/2lnabs(sectheta+tantheta))-lnabs(sectheta+tantheta)#
#I=1/2secthetatantheta-1/2lnabs(sectheta+tantheta)#
Recall our original substitution
#I=1/2xsqrt(x^2-1)-1/2lnabs(x+sqrt(x^2-1))+C#
Explanation:
Let
We will use the following Rule of Integration by Parts (IBP) :
Taking
Spread the Joy Maths.!