How do you evaluate the integral #int 1/x# from #[-oo,-1]#?

1 Answer
Jan 23, 2017

The integral:

#int_(-oo)^(-1) (dx)/x#

is not convergent.

Explanation:

This is an improper integral that is evaluated as:

# int_(-oo)^(-1) (dx)/x = lim_(t->-oo) int_t^(-1) (dx)/x#

The indefinite integral is:

#int (dx)/x = lnabs(x)+C#, so:

#int_(-oo)^(-1) (dx)/x = lim_(t->-oo) (ln(1) - ln abs(t)) = lim_(t->-oo) -ln abs(t) = -oo #