How do you find the antiderivative of #cos(x)/(1-cos(x))#?
2 Answers
Explanation:
#I=intcos(x)/(1-cos(x))dx#
Rewriting the integral in a simpler form:
#I=int((cos(x)-1)+1)/(1-cos(x))dx#
#I=int(-(1-cos(x)))/(1-cos(x))dx+intdx/(1-cos(x))#
#I=-intdx+intdx/(1-cos(x))#
#I=-x+intdx/(1-cos(x))#
For the remaining integral, we'll use the tangent half-angle substitution which uses
That is,
Also note that the substitution
Applying this to the integral gives:
#I=-x+intdx/((1-(1-tan^2(x/2))/sec^2(x/2)))#
#I=-x+int(sec^2(x/2)dx)/(sec^2(x/2)-(1-tan^2(x/2))#
Rewriting
#I=-x+int(sec^2(x/2)dx)/(2tan^2(x/2))#
#I=-x+2int(1/2sec^2(x/2)dx)/(2tan^2(x/2))#
Substituting:
#I=-x+2intdt/t^2#
#I=-x-2/t+C#
#I=-x-2/tan(x/2)+C#
#I=-x-2cot(x/2)+C#