Question #2fcf6

2 Answers
Jan 27, 2017

ans.the equation is #y=x-1#.

Explanation:

The equation of the curve is #x+y-1=ln(x^2+y^2)#
we can write it as # e^(x+y-1)=x^2+y^2#
or,#e^(x+y)=e(x^2+y^2)#
or # e^x e^y=e(x^2+y^2)# #color (red) (1)#
now differentiating eq. 1 w.r.t #x# we get
#e^x e^y (dy/dx)# +#e^x e^y# =#2ex+2ey(dy/dx)#
rearranging we get ,#(dy/dx) =(2ex-e^(x+y))/(e^(x+y)-2ey)#

so we get #(dy/dx) at (1,0)# =#(2e-e)/(e-0)# =#e/e#=#1#.
so the eq. of the tangent line at the point# (1,0)# will be ,
#(y-0)=(dy/dx) at (1,0) (x-1)#
or # y=(x-1)#. (ans).

Jan 27, 2017

#y=x-1#

Explanation:

#x+y-1=ln(x^2+y^2)#. Term-by-term differentiation gives

#1+y'=1/(x^2+y^2)(2x+2yy')#. At P(1, 0) this becomes

1+y'=2, giving y'=0, at P.

So, the equation to the tangent at P)1, 0) is

#y-0=(1)(x-1)#

Note in the graphs the tangent crossing the curve at the point of

inflexion P(1, 0). The scales, for the two graphs, are different

graph{(x+y-1-ln(x^2+y^2))(y-x+1)((x-1)^2+y^2-.01)=0 [-5, 5, -2.5, 2.5]}

graph{(x+y-1-ln(x^2+y^2))(y-x+1)((x-1)^2+y^2-.0001)=0 [0, 2, -.5, .5]}