What is #g(x+a)-g(x)# when #g(x)=-x^2-x#?

2 Answers
Jan 27, 2017

I got:
#g(x+a)-g(x)=-(x+a)^2-(x+a)-(-x^2-x)#

Explanation:

Let us use our constant #a#:
#g(x+a)-g(x)=color(red)(-(x+a)^2-(x+a))color(blue)(-x^2-x)#
Where:
Red = #g(x+a)#
Blue= #g(x)#

We can also rearrange to try to simplify it.

Jan 27, 2017

#g(x+a) -g(x) =-a(a+2x+1)#

Explanation:

#g(x)= -x^2-x :. g(x+a) = -(x+a)^2 -(x+a) = -(x^2+2ax+a^2)- (x+a) = -x^2 -2ax - a^2 -x -a :. g(x+a) -g(x) = -x^2 -2ax - a^2 -x -a - (-x^2-x) = cancel(-x^2) -2ax - a^2 cancel(-x) -a + cancelx^2+ cancel x = -a(a+2x+1)#[Ans]