How do you evaluate the integral #int x/(sqrt(x-1)-sqrtx)#?
1 Answer
Explanation:
Multiply first by the conjugate of the denominator to simplify the integrand.
#I=int(x(sqrt(x-1)+sqrtx))/((sqrt(x-1)-sqrtx)(sqrt(x-1)+sqrtx))dx#
The denominator is now in the form
#I=int(x(sqrt(x-1)+sqrtx))/((x-1)-x)dx#
#I=-intx(sqrt(x-1)+sqrtx)dx#
Distributing, splitting up the integral and rewriting:
#I=-intx(x-1)^(1/2)dx-intx^(3/2)dx#
The second integral can be directly integrated using
#I=-intx(x-1)^(1/2)dx-x^(5/2)/(5/2)#
#I=-intx(x-1)^(1/2)dx-2/5x^(5/2)#
For the remaining integral, let
#I=-int(u+1)u^(1/2)du-2/5x^(5/2)#
Distributing
#I=-intu^(3/2)du-intu^(1/2)du-2/5x^(5/2)#
Using the rule from earlier:
#I=-u^(5/2)/(5/2)-u^(3/2)/(3/2)-2/5x^(5/2)+C#
From
#I=-2/5(x-1)^(5/2)-2/3(x-1)^(3/2)-2/5x^(5/2)+C#