How do you simplify #x^2*x^sqrt3#?
1 Answer
Jan 29, 2017
Explanation:
Imagine, first, we wanted to simplify the expression
Then,
#x^2*x^3=overbrace(x*x)^(x^2)*overbrace(x*x*x)^(x^3)=overbrace(x*x*x*x*x)^(x^5)=x^5#
In general, we can write that:
#x^a*x^b=overbrace(x*x*...*x)^("x multiplied a times")*overbrace(x*x*...*x)^("x multiplied b times")=overbrace(x*x*...*x)^("x multiplied a+b times")=x^(a+b)#
In the given problem, one of the powers is
#x^2*x^sqrt3=x^(2+sqrt3)#