How do you find the derivative of # y=14tanxcosx+10cscx#?

1 Answer

#dy/dx=14cosx-10csc x cot x#

Explanation:

In order to differentiate this function, we will need to use two different differentiation rules:

  1. The Chain Rule
  2. The Product Rule

Chain rule:

#[f(x)]^n=n[f(x)]^(n-1)xxf'(x)#

Product rule:

#d/dxuv=u(dv)/dx+v(du)/dx#

#y=14tanxcosx + 10cscx#

Let's split the function into two parts and differentiate each separately.

#14tanxcosx#

#"Let"# #u = 14tanx# #"and"# #v=cosx#

#(du)/dx=14sec^2x#

#(dv)/dx=-sinx#

#d/dxuv=14cosx sec^2x-14tanxsinx#

#=14/cosx-(14sin^2x)/cosx=(14-14sin^2x)/cosx=(14(1-sin^2x))/cosx=(14cos^2x)/cosx=14cosx#

#d/dx10cscx=-10csc x cot x#

#dy/dx=14cosx-10csc x cot x#

Also note that we can simplify the first expression:

#d/dx 14 tanx cosx = d/dx 14 sinx/cosx cosx #
# " " = d/dx 14 sinx #
# " " = 14 cosx #