How do you find the derivative of #y = [(tanx - 1) / secx]#?
1 Answer
Jan 29, 2017
Explanation:
We need to know the following derivatives:
#d/dx(sinx)=cosx# #d/dx(cosx)=-sinx#
First we can simplify the function using
#y=(sinx/cosx-1)/(1/cosx)=cosx(sinx/cosx-1)=sinx-cosx#
Then the derivative is:
#dy/dx=d/dx(sinx)-d/dx(cosx)#
#dy/dx=cosx-(-sinx)#
#dy/dx=cosx+sinx#