Step 1) Solve the first equation for #y#:
#-6x + y = -8#
#-6x + color(red)(6x) + y = color(red)(6x) - 8#
#0 + y = 6x - 8#
#y = 6x - 8#
Step 2) Substitute #6x - 8# for #y# in the second equation and solve for #x#:
#-3x + (6x - 8) = -4#
#-3x + 6x - 8 = -4#
#(-3 + 6)x - 8 = -4#
#3x - 8 = -4#
#3x - 8 + color(red)(8) = -4 + color(red)(8)#
#3x - 0 = 4#
#3x = 4#
#(3x)/color(red)(3) = 4/color(red)(3)#
#(color(red)(cancel(color(black)(3)))x)/cancel(color(red)(3)) = 4/3#
#x = 4/3#
Step 3) Substitute #4/3# for #x# in the solution to the first equation at the end of Step 1 and calculate #y#:
#y = (6 xx 4/3) - 8#
#y = 24/3 - 8#
#y = 8 - 8#
#y = 0#
The solution is: #x = 4/3# and #y = 0#