How do you find the integral from e^2 to e of #dx / (x * ln (x^8))#?

1 Answer
Feb 1, 2017

#-1/8ln2, or, -ln2/8.#

Explanation:

Using the usual rules of Log function, we find that the Integrand is

#1/{(x)(lnx^8)}=1/{x(8lnx)}=1/(8xlnx)#

Hence, #I=1/8int_(e^2) ^e 1/(xlnx)dx=1/8int_(e^2) ^e (1/(lnx))(1/xdx)#

Substitute, #ln x=t rArr 1/xdx=dt#

Also, #x=e^2 rArr t=ln x=ln e^2=2, &, x=e rArr t=1.#

#:. I=1/8 int_2^1 1/t dt=1/8[ln|t|]_2^1=1/8(ln1-ln2)#

#"Therefore, I="-ln2/8.#

Enjoy Maths.!