Question #4bf05

2 Answers
Feb 2, 2017

The solutions are #S={-pi/6 , -5/6pi}#

Explanation:

We solve this equation like a quadratic equation

#ax^2+bx+c=0#

#4sin^2x+4sinx+1=0#

Let's calculate the discriminant

#Delta=b^2-4ac=4^4-4*4*1=16-16=0#

As #Delta =0#, there is one double real root

#x=-b/2a#

#sinx=-4/(2*4)=-1/2#

Therefore,

#x=-pi/6 ; -5pi/6#

Feb 2, 2017

#4sin^2x+4sinx+1=0#

#=>(2sinx)^2+2*2sinx*1+1^2=0#

#=>(2sinx+1)^2=0#

#=>sinx=-1/2=sin(-pi/6)#

General solution

#x=npi-(-1)^npi/6" where " n in ZZ#

We are to find out x for x# in [-pi;4pi]#

Putting #n=-1#

#x=-pi+pi/6=-(5pi)/6#

Putting #n=0#

#x=-pi/6 in [-pi;4pi]#

Putting #n=1#

#x=pi-(-pi/6)=(7pi)/6 in [-pi;4pi]#

Putting #n=2#

#x=2pi-pi/6=(11pi)/6 in[-pi;4pi]#

Putting#n=3#

#x=3pi-(-pi/6)=(19pi)/6 in [-pi;4pi]#

Putting #n=4#

#x=4pi-(+pi/6)=(23pi)/6 in [-pi;4pi]#