How do you find the antiderivative of #int tan^3xsecx dx#?
1 Answer
Feb 2, 2017
Explanation:
#I=inttan^3xsecxdx#
Rewrite this using
#I=inttan^2xtanxsecxdx#
#I=int(sec^2x-1)(secxtanx)dx#
Let
#I=int(u^2-1)du#
#I=1/3u^3-u+C#
#I=1/3sec^3x-secx+C#