Question #2cc45

2 Answers
Feb 3, 2017

#lim_(x->oo)ln(ln(x))/sqrt(x) = 0#

Explanation:

#lim_(x->oo)ln(ln(x))/sqrt(x)# produces an #oo/oo# indeterminate form on direct substitution, and so we may apply L'Hopital's rule.

#lim_(x->oo)ln(ln(x))/sqrt(x) = lim_(x->oo)(d/dxln(ln(x)))/(d/dxsqrt(x))#

#=lim_(x->oo)(1/(xln(x)))/(1/(2sqrt(x))#

#=lim_(x->oo)2/(sqrt(x)ln(x))#

#=2/oo#

#=0#

Feb 3, 2017

#0#

Explanation:

#e^x# is a monotonically increasing function so

#lim_(x->oo)log(log(x))/sqrt(x)=lim_(x->oo)e^(log(logx))/e^sqrt(x)=lim_(x->oo)log(x)/e^sqrt(x)#

Here #log(x) < x# and #e^sqrt(x)# grows much more quickly than any polynomial function so

#lim_(x->oo)log(log(x))/sqrt(x)=lim_(x->oo)log(x)/e^sqrt(x)=0#