What is #(int cos^5x dx)/(intsinx dx) -intcos^5x/sinxdx#?
1 Answer
Feb 3, 2017
Explanation:
Let:
#I=intcos^5xdx# #J=intsinxdx# #K=intcos^5x/sinxdx#
Then:
#I=intcos^4x(cosx)dx=int(cos^2x)^2(cosx)dx#
Rewriting with the Pythagorean identity:
#I=int(1-sin^2x)^2(cosx)dx#
Let
#I=int(1-u^2)^2du=int(1-2u^2+u^4)du#
Term by term:
#I=u-2/3u^3+1/5u^5+C_1=sinx-2/3sin^3x+1/5sin^5x+C_1#
Now:
#J=-cosx+C_2#
And:
#K=intcos^5x/sinxdx#
Using the form of
#K=int((1-sin^2x)^2cosx)/sinxdx#
Again,
#K=int(1-2u^2+u^4)/udu=int(1/u-2u+u^3)du#
Term by term:
#K=ln(absu)-u^2+1/4u^4=ln(abssinx)-sin^2x+1/4sin^4x+C_3#
Then the original expression is:
#I/J-K=(sinx-2/3sin^3x+1/5sin^5x+C_1)/(-cosx+C_2)+ln(abssinx)-sin^2x+1/4sin^4x+C_3#