How do you factor the expression and use the fundamental identities to simplify #cos^2x+cos^2xtan^2x#?

1 Answer
Feb 5, 2017

#"simplifies to " 1#

Explanation:

The required #color(blue)"trigonometric identities"# are.

#color(red)(bar(ul(|color(white)(2/2)color(black)(1+tan^2x=sec^2x)color(white)(2/2)|)))#

and #color(red)(bar(ul(|color(white)(2/2)color(black)(secx=1/(cosx))color(white)(2/2)|)))#

Taking out a common factor of #cos^2x#

#rArrcos^2x(1+tan^2x)#

Using the above identities.

#=cos^2xsec^2x=cancel(cos^2x)^1xx1/(cancel(cos^2x)^1)=1#