What is the derivative of #x tan^-1 - ln sqrt(1+x^2)#?
1 Answer
Feb 5, 2017
Explanation:
#y=xtan^-1(x)-lnsqrt(1+x^2)#
First rewrite the logarithm using
#y=xtan^-1(x)-1/2ln(1+x^2)#
Now when we differentiate, we will use the product rule for
#dy/dx=(d/dxx)tan^-1(x)+x(d/dxtan^-1(x))-1/2(1/(1+x^2))(d/dx(1+x^2))#
#dy/dx=tan^-1(x)+x(1/(1+x^2))-1/2(1/(1+x^2))(2x)#
#dy/dx=tan^-1(x)+x/(1+x^2)-x/(1+x^2)#
#dy/dx=tan^-1(x)#