Question #fcb8e
1 Answer
Explanation:
#I=int_0^(ln2)e^(2x)/(e^(4x)+3)dx#
Let
#I=1/2int_0^(ln2)(2e^(2x))/((e^(2x))^2+3)dx=1/2int_1^4(du)/(u^2+3)#
We can manipulate this into the arctangent integral:
#I=1/6int_1^4(du)/(u^2/3+1)=1/6int_1^4(du)/((u/sqrt3)^2+1)#
Let
#I=sqrt3/6int_1^4(1/sqrt3du)/((u/sqrt3)^2+1)=1/(2sqrt3)int_(1/sqrt3)^(4/sqrt3)(dv)/(v^2+1)#
This is the arctangent integral:
#I=1/(2sqrt3)arctan(v)|_(1/sqrt3)^(4/sqrt3)=1/(2sqrt3)(arctan(4/sqrt3)-arctan(1/sqrt3))#
#I=arctan(4/sqrt3)/(2sqrt3)-1/(2sqrt3)(pi/6)#
#I=(6arctan(4/sqrt3)-pi)/(12sqrt3)approx0.18434#