How do you differentiate #f(x)=x * (4-x^2)^(1/2)# using the chain rule?
1 Answer
Feb 6, 2017
#dy/dx=-x^2(4-x^2)^(-1/2)+(4-x^2)^(1/2)#
Explanation:
#y=x*(4-x^2)^(1/2)#
#dydx=x*[1/2(4-x^2)^(-1/2)(-2x)]+[(4-x^2)^(1/2)(1)]#
#dy/dx=-x^2(4-x^2)^(-1/2)+(4-x^2)^(1/2)#