How do you evaluate the limit #(sqrt(x+6)-x)/(x-3)# as x approaches #3#?
1 Answer
Feb 6, 2017
Explanation:
As the function is indeterminate
#0/0# when x = 3Multiply the numerator/denominator by the conjugate of the numerator.
#sqrt(x+6)-x" conjugate "tosqrt(x+6)+x#
#rArr((sqrt(x+6)-x)(sqrt(x+6)+x))/((x-3)(sqrt(x+6)+x)#
#=(x+6-x^2)/((x-3)(sqrt(x+6)+x))#
#=(-cancel((x-3))(x+2))/(cancel((x-3))(sqrt(x+6)+x))# exclusion x ≠ 3
#=(-(x+2))/(sqrt(x+6)+x)#
#rArrlim_(xto3)(sqrt(x+6)-x)/(x-3)#
#=lim_(xto3)(-(x+2))/(sqrt(x+6)+x)=-5/6#